A Reconstruction Algorithm Using Singular Value Decomposition of a Discrete Representation of the Exponential Radon Transform Using Natural Pixels

نویسنده

  • G. L. Zeng
چکیده

Abstrrrct-An algorithm to correct for constant attenuation in SPECT is derived from the singular value decomposition (SVD) of a discrete representation of the exponential Radon transform using natural pixels. The algorithm is based on the assumption that a continuous image can be obtained by backprojecting the discrete array q, which is the least squares solution to Mq = p, where p is the array of discrete measurements, and the matrix M represents the composite operator of the backprojection operator A: followed by the projection operator A,: A singular value decomposition of M is used to solve the equation Mq = p, and the final image is obtained by sampling the backprojection of the solution q at a discrete array of points. Analytical expressions are given to calculate the matrix elements of M that are integrals of exponential factors over the overlapped area of two prgSection strip functions (natural pixels). A spectral analysis of the exponential Radon transform is compared with that of the Radon transform. The condition number of the spectrum increaees with increased attenuation coefficient, which correlates with the increase in statistical error propagation seen in clinical images obtained with low-energy radionuclides. Computer simulations using 32 projections sampled over 360 degrees show an improvement in the SVD reconstruction over the convolution backprojection reconstruction, especially when the projection data is corrupted with noise.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symbolic computation of the Duggal transform

Following the results of cite{Med}, regarding the Aluthge transform of polynomial matrices, the symbolic computation of the Duggal transform of a polynomial matrix $A$ is developed in this paper, using the polar decomposition and the singular value decomposition of $A$. Thereat, the polynomial singular value decomposition method is utilized, which is an iterative algorithm with numerical charac...

متن کامل

Reconstruction from Radon Projections and Orthogonal Expansion on a Ball

The relation between Radon transform and orthogonal expansions of a function on the unit ball in R is exploited. A compact formula for the partial sums of the expansion is given in terms of the Radon transform, which leads to algorithms for image reconstruction from Radon data. The relation between orthogonal expansion and the singular value decomposition of the Radon transform is also exploited.

متن کامل

Feature Extraction of Visual Evoked Potentials Using Wavelet Transform and Singular Value Decomposition

Introduction: Brain visual evoked potential (VEP) signals are commonly known to be accompanied by high levels of background noise typically from the spontaneous background brain activity of electroencephalography (EEG) signals. Material and Methods: A model based on dyadic filter bank, discrete wavelet transform (DWT), and singular value decomposition (SVD) was developed to analyze the raw data...

متن کامل

Analysis of discrete-to-discrete imaging models for iterative tomographic image reconstruction and compressive sensing

Discrete-to-discrete imaging models for computed tomography (CT) are becoming increasingly ubiquitous as the interest in iterative image reconstruction algorithms has heightened. Despite this trend, all the intuition for algorithm and system design derives from analysis of continuous-to-continuous models such as the X-ray and Radon transform. While the similarity between these models justifies ...

متن کامل

Disguised Face Recognition by Using Local Phase Quantization and Singular Value Decomposition

Disguised face recognition is a major challenge in the field of face recognition which has been taken less attention. Therefore, in this paper a disguised face recognition algorithm based on Local Phase Quantization (LPQ) method and Singular Value Decomposition (SVD) is presented which deals with two main challenges. The first challenge is when an individual intentionally alters the appearance ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004